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          Introduction: The inverted pendulum 

system, a canonical example of an unstable 

mechanical system, is often used to model the 

control problems encountered in the flight of 

rockets in the initial stages of launch, when the 

airspeed is too small for aerodynamic stability [1]. 

A system with a flexible pendulum is a variant that 

more accurately simulates rocket flight 

nonlinearities (particularly, the flex modes of the 

rocket). 

        To increase NASA capability of modeling 

dynamical systems for which closed form 

solutions are not clear or easily developed, this 

project aims to provide a machine learning 

approach that produces a learned dynamical model 

of the Penny robot (a rover with a flexible inverted 

pendulum) from operational data. The developed 

approach can then be generalized to other complex 

dynamical systems, including but not limited to 

rockets and other robotic systems. 

        Rationale: Traditional mathematical and 

control approaches can be used to develop system 

models, but in any real-world system, there are 

myriad nonlinearities that may be insufficiently 

described in the system model. If sufficient 

training data can be gathered from operation, a 

model could be learned that provides a 

representation of the system dynamics. This 

learned model can then be used to test different 

controllers, both in simulation and on the 

hardware. 

        Methods: The state-space representation of a 

linear time invariant discrete time dynamical 

system is given by x(t+1) = Ax(t) + Bu(t). A is the 

state evolution matrix (how x(t) influences 

x(t+1)), x(t) is the state at time t, B is the control 

matrix (how u(t) influences x(t+1)), and u(t) is the 

control input at time t [2]. If u(t) is zero, this 

equation simplifies to x(t+1) = Ax(t). Data 

collected from letting a system initialized with 

random states and no control input evolve through 

time (until specified failure conditions) was used 

to train a neural network representation of the A 

matrix. 

        OpenAI's gym cartpole environment [3] was 

used as a testbed for developing a model to learn 

from collected operational data. This environment 

was modified to use system parameters 

representative of Penny (e.g. pendulum length, 

pendulum mass, cart mass, etc.). A model 

describing the 4-state system as specified by Barto 

et al. [4] was developed first, after which a model 

describing the linearized 6-state system as 

specified by DuPuis, Okasha [5] was developed. 

        Two datasets, curr and next were created that 

paired the measurement at time t with the 

measurement at t+1 (i.e. curr[i] = x(t) and next[i] 

= x(t+1)). A multilayer perceptron architecture 

was used to learn a model of the system; given x(t), 

the model predicts x(t+1). 

        This approach will be applied to real 

operational Penny data to learn a model of the 

system dynamics. 

        Results: The developed pipeline produced a 

learned A matrix of the dynamics present in the 

simulation that evolves states through time with 

greater than 99.99% accuracy on unseen data. The 

simulation uses the semi-implicit Euler integrator, 

which may positively influence the model 

accuracy. At the time of this writing, not enough 

operational Penny data has been collected to test 

the ability of the pipeline to learn an accurate 

model of the Penny bot. 

        Conclusions: Though work remains to be 

done regarding developing a model for a physical 

system, the results are promising as it has been 

shown that a neural network architecture trained 

solely on operational data can learn a dynamical 

model that accurately represents the state 

evolution of a simulated nonlinear system. 
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